23 research outputs found

    SCANNING NEAR-FIELD OPTICAL MICROSCOPY FOR MEASURING MATERIALS PROPERTIES AT THE NANOSCALE

    Get PDF
    Apertureless scanning near-field optical microscopy is a valuable tool for characterization of chemical and spectroscopic properties of the materials at the nanoscale. Description of apertureless near-field microscope is provided along with the description of a homodyne detection of the near-field signal which allows enhancing of a weak scattered radiation. Experimental evidences that homodyne detection markedly improves the signal-to-noise ratio of the detected signal are presented. A model for the dependence of the near field signal, as a function of the normal distance of the tip from the surface, is discussed. Application of a model in which the tip is represented by two spherical scatterers, one large and one small, indicates the electromagnetic field enhancement is 90 fold greater at the sharp apex of metallic probe tip.Apertureless near-field scanning infrared microscopy was employed to study samples patterned with regions of DNA and hexadecanethiol. Chemical contrast imaging was achieved by examining IR absorption in the spectral region of the phosphate stretching band of DNA molecules and harmonic demodulation of the signal scattered by the oscillating probe. IR absorption maps revealed that the IR signal was not coupled to the vertical tip motion, indicating artifact-free imaging. Monolayer-sensitive chemical imaging with a lateral spatial resolution of approximately 200 nm is demonstrated.The field enhancement in very small aperture lasers was studied using apertureless near-field microscopy. The near-field optical pattern around the aperture indicates the interference of surface plasmons with incident light. A surface plasmon point-source model has been used to determine the wavelength and the decay length of surface plasmons at the Al/silicon nitride interface. Near-field measurements also confirmed a preferred orientation of the rectangular aperture waveguide for the signal enhancement in very small aperture lasers.Optical field confinement in a ridge waveguide nanostructure designed for ultrahigh-density recording was observed using an apertureless near-field scanning optical microscope. The aperture was fabricated on a commercial edge-emitting semiconductor laser as the light source. The emission patterns are in agreement with theoretical simulation of such structures. A 90 nm x 70 nm full-width-half-maximum spot size was measured and is comparable to the ridge width of the aperture

    Sensor Selection to Improve Estimates of Particulate Matter Concentration from a Low-Cost Network

    Get PDF
    Deployment of low-cost sensors in the field is increasingly popular. However, each sensor requires on-site calibration to increase the accuracy of the measurements. We established a laboratory method, the Average Slope Method, to select sensors with similar response so that a single, on-site calibration for one sensor can be used for all other sensors. The laboratory method was performed with aerosolized salt. Based on linear regression, we calculated slopes for 100 particulate matter (PM) sensors, and 50% of the PM sensors fell within ±14% of the average slope. We then compared our Average Slope Method with an Individual Slope Method and concluded that our first method balanced convenience and precision for our application. Laboratory selection was tested in the field, where we deployed 40 PM sensors inside a heavy-manufacturing site at spatially optimal locations and performed a field calibration to calculate a slope for three PM sensors with a reference instrument at one location. The average slope was applied to all PM sensors for mass concentration calculations. The calculated percent differences in the field were similar to the laboratory results. Therefore, we established a method that reduces the time and cost associated with calibration of low-cost sensors in the field

    Imaging of InGaN inhomogeneities using visible apertureless near-field scanning optical microscope

    Full text link
    Received ( The optical properties of epitaxially grown islands of InGaN are investigated with nanometer-scale spatial resolution using visible apertureless near-field scanning optical microscopy. Scattered light from the tip-sample system is modulated by cantilever oscillations and detected at the third harmonic of the oscillation frequency to distinguish the near-field signal from unwanted scattered background light. Scattered near-field measurements indicate that the as-grown InGaN islanded film may exhibit both inhomogeneous In composition and strain-induced changes that affect the optical signal at 633 nm and 532 nm. Changes are observed in the optical contrast for large 3D InGaN islands (100's of nm) of the same height. Near-field optical mapping of small grains on a finer scale reveals InGaN composition or strain-induced irregularities in features with heights of only 2 nm, which exhibit different near-field signals at 633 nm and 532 nm incident wavelengths. Optical signal contrast from topographic features as small as 30 nm is detected

    Toxicity assessment of zinc oxide nanoparticles using sub-acute and sub-chronic murine inhalation models

    Get PDF
    BACKGROUND: Although ZnO nanoparticles (NPs) are used in many commercial products and the potential for human exposure is increasing, few in vivo studies have addressed their possible toxic effects after inhalation. We sought to determine whether ZnO NPs induce pulmonary toxicity in mice following sub-acute or sub-chronic inhalation exposure to realistic exposure doses. METHODS: Mice (C57Bl/6) were exposed to well-characterized ZnO NPs (3.5 mg/m(3), 4 hr/day) for 2 (sub-acute) or 13 (sub-chronic) weeks and necropsied immediately (0 wk) or 3 weeks (3 wks) post exposure. Toxicity was assessed by enumeration of total and differential cells, determination of total protein, lactate dehydrogenase activity and inflammatory cytokines in bronchoalveolar lavage (BAL) fluid as well as measurements of pulmonary mechanics. Generation of reactive oxygen species was assessed in the lungs. Lungs were evaluated for histopathologic changes and Zn content. Zn concentration in blood, liver, kidney, spleen, heart, brain and BAL fluid was measured. RESULTS: An elevated concentration of Zn(2+) was detected in BAL fluid immediately after exposures, but returned to baseline levels 3 wks post exposure. Dissolution studies showed that ZnO NPs readily dissolved in artificial lysosomal fluid (pH 4.5), but formed aggregates and precipitates in artificial interstitial fluid (pH 7.4). Sub-acute exposure to ZnO NPs caused an increase of macrophages in BAL fluid and a moderate increase in IL-12(p40) and MIP-1α, but no other inflammatory or toxic responses were observed. Following both sub-acute and sub-chronic exposures, pulmonary mechanics were no different than sham-exposed animals. CONCLUSIONS: Our ZnO NP inhalation studies showed minimal pulmonary inflammation, cytotoxicity or lung histopathologic changes. An elevated concentration of Zn in the lung and BAL fluid indicates dissolution of ZnO NPs in the respiratory system after inhalation. Exposure concentration, exposure mode and time post exposure played an important role in the toxicity of ZnO NPs. Exposure for 13 wks with a cumulative dose of 10.9 mg/kg yielded increased lung cellularity, but other markers of toxicity did not differ from sham-exposed animals, leading to the conclusion that ZnO NPs have low sub-chronic toxicity by the inhalation route

    Imaging of InGaN inhomogeneities using visible apertureless near-field scanning optical microscope

    No full text
    Received ( The optical properties of epitaxially grown islands of InGaN are investigated with nanometer-scale spatial resolution using visible apertureless near-field scanning optical microscopy. Scattered light from the tip-sample system is modulated by cantilever oscillations and detected at the third harmonic of the oscillation frequency to distinguish the near-field signal from unwanted scattered background light. Scattered near-field measurements indicate that the as-grown InGaN islanded film may exhibit both inhomogeneous In composition and strain-induced changes that affect the optical signal at 633 nm and 532 nm. Changes are observed in the optical contrast for large 3D InGaN islands (100's of nm) of the same height. Near-field optical mapping of small grains on a finer scale reveals InGaN composition or strain-induced irregularities in features with heights of only 2 nm, which exhibit different near-field signals at 633 nm and 532 nm incident wavelengths. Optical signal contrast from topographic features as small as 30 nm is detected
    corecore